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Abstract. This note concerns a quasilinear parabolic system modeling an in-

traguild predation community in a focal habitat in Rn, n ≥ 2. In this system
the intraguild prey employs a fitness-based dispersal strategy whereby the in-

traguild prey moves away from a locale when predation risk is high enough to
render the locale undesirable for resource acquisition. The system modifies the

model considered in Ryan and Cantrell (2015) by adding an element of mutual

interference among predators to the functional response terms in the model,
thereby switching from Holling II forms to Beddington-DeAngelis forms. We

show that the resulting system can be realized as a semi-dynamical system with

a global attractor for any n ≥ 2. In contrast, the orginal model was restricted
to two dimensional spatial habitats. The permanance of the intraguild prey

then follows as in Ryan and Cantrell by means of the Acyclicity Theorem of

Persistence Theory.

1. A Quasilinear System of PDE. Let n ≥ 2 and Ω be a bounded smooth
domain in Rn. In this paper we consider initial-boundary value problem for the
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following quasilinear system of partial differential equations modeling intraguild
predation.

ut − d1∆u = f(x, u, v, w)u in Ω× (0, T ),
vt −∆[M(u, v, w;λ)v] = g(u, v, w)v in Ω× (0, T ),
wt − d3∆w = h(u, v, w)w in Ω× (0, T ),
∂νu = ∂νv = ∂νw = 0 on ∂Ω× (0, T ),
(u(x, 0), v(x, 0), w(x, 0)) = (u0(x), v0(x), w0(x)) in Ω,

(1)

where T > 0 is the maximal time of existence and ν denotes the outer normal vector
on ∂Ω. Here u(x, t) is the density of the resource species, which is consumed by
both the intraguild prey with density v(x, t) and intraguild predator with density
w(x, t), while the intraguild prey is also consumed by the intraguild predator, as
indicated by the definitions of f, g and h below:

f(x, u, v, w) = r(x)− ω1u−
a1v

1 + h1a1u+ α1v
− a2w

1 + h2a2u+ h3a3v + α2w
, (2)

g(u, v, w) =
e1a1u

1 + h1a1u+ α1v
− a3w

1 + h2a2u+ h3a3v + α2w
− µ1 − ω2v, (3)

h(u, v, w) =
e2a2u+ e3a3v

1 + h2a2u+ h3a3v + α2w
− µ2 − ω3w, (4)

where all parameters aj , αj , hj , ej , µj , ωj are positive constants. The resource species
and the intraguild predator are assumed to disperse unconditionally with rates d1

and d3 respectively, while the intraguild prey adopts a conditional dispersal strategy
that balances resource availability, predation avoidance and possibly (intraspecific)
population pressure. The specific form of M(u, v, w;λ) will be presented in the
main results section.

2. Background. Intraguild predation is an important community module in ecol-
ogy. It refers to a situation in which a predator and a prey also compete for a
shared resource (i.e., they are members of an ecological guild). As discussed in
[6], intraguild predation is widely observed in nature across a broad range of taxi.
Indeed, in the database of 113 food webs that were examined in [6], intraguild
predation occurs in high frequency.

Despite the ubiquity of intraguild predation in nature, the early efforts of Holt
and Polis [11] to set up an ODE system based modeling framework for intraguild
predation found that such a model was particularly prone to species exclusions. Holt
and Polis suggested a number of possible mitigating factors that might enhance the
chance of species coexistence. One of these was to allow for a heterogeneous en-
vironment. Somewhat contemporaneously, numerous empirical studies reinforced
this suggestion through the observation of nonrandom foraging behaviors and habi-
tat selection on the part of the intraguild prey species to reduce predation risk
([8, 15, 16, 19, 21]).

To the best of our knowledge, Amarasekare [4, 5] was the first to incorporate
spatial heterogeneity into models for intraguild predation. She did so through a
discrete diffusion framework for three species inhabiting a network of three patches
(each with a different level of resource productivity) for a total of nine ordinary
differential equations that she studied numerically. She examined a number of
dispersal strategies for the intraguild prey, in particular, including one which cued
upon fitness as a proxy for the balance between the need to acquire resources and
the need to avoid predation.
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Following [5], Ryan and Cantrell [17, 18] developed a continuous space model for
intraguild predation inside a focal habitat patch, leading to a quasilinear system of
parabolic partial differential equations. In this system, the resource species and the
intraguild predator moved randomly inside the habitat patch via diffusion, whereas
the intraguild prey’s motility at a locale within the patch not only incorporated a
degree of randomness but was also conditioned upon the densities of the resource
species and the intraguild predator. (Spatial heterogeneity was introduced into the
system through the intrinsic growth rate of the resource.) As in [5], the conditional
aspect of the intraguild prey’s motility depended on the balance between resource
availability and predation risk involving its fitness at low abundances. When the
possibility of obtaining resources outweighed potential danger from the predator,
the intraguild prey’s movement was close to random. On the other hand, when the
situation was reversed the intraguild prey had a strong tendency to disperse away
from the current risky location.

The particular model in [17] and [18] was realized as an upper triangular cross-
diffusion system wherein predation was modeled vis-à-vis Holling II type functional
responses and all species were subject to logistic self-regulation. Recent progress in
the analysis of such systems (in particular, the results of [13]) enabled the authors
to obtain global existence results sufficient for the resulting dynamical system to
exhibit a compact global attractor so long as the focal habitat patch was a smooth
bounded domain in R2. The Acyclicity Theorem of Hale and Waltman [10] then
leads to conditions under which the intraguild prey could persist when the tendency
to move away from locales when predation risk outweighed potential for acquiring
the resource was sufficiently strong.

It clearly is of interest from an ecological modeling perspective to allow for a three
dimensional habitat patch, and of mathematical interest to have the patch be of an
arbitrary finite dimension. However, the Gagliardo-Nirenberg type inequality based
argument originating in [13] and brought to bear in [17] and [18] only works when
the focal habitat patch is a bounded domain in R2. Moreover, in [17] and [18], the
conditional aspect of the intraguild prey’s motility depended only on the densities
of intraguild predator and the resource species and not the intraguild prey itself. In
effect the intraguild prey cued upon the fitness it would have when its density was
near zero. Since its persistence via the Acyclicity Theorem is predicated around its
ability to increase its abundance when rare, such a limitation is not unreasonable,
but it is a limitation nevertheless.

In this note, we study the closely related quasilinear parabolic system (1) and
demonstrate how this model enables us to get around these obstacles by modify-
ing the functional response to include an element of predator dependence in the
functional response terms. In so doing we are assuming some degree of mutual
interference in the predation process among intraguild prey relative to the resource
and the intraguild predator relative to both the intraguild prey and the resource.
We believe such an assumption is entirely reasonable from an ecological point of
view.

The results of [13] refine the classical result of Amann [2] on global existence
in quasilinear parabolic systems that asserts global existence if components of the
system are asymptotically bounded in L∞-norm. Such bounds are simple conse-
quences of comparison principles for single equations via upper and lower solutions
when motility is purely random, but are challenging to obtain if the motility has
a nonrandom or conditional aspect to it. Le showed that if the easier condition
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of ultimate uniform boundedness in Ln norm, where n is the underlying spatial
dimension, is met, then one can boot strap to the L∞ bounds required to invoke
the results of [2] and indeed obtain ultimate uniform bounds in a Hölder space suf-
ficient to assert the existence of a global attractor. Gagliardo-Nirenberg identities
enable one to get such bounds in L2 norm when the focal patch is two dimensional.
The inclusion of mutual interference among predators enables us to use parabolic
Nash-DeGiorgi estimates instead of Gagliardo-Nirenberg estimates so as to obtain
ultimate uniform boundedness of the intraguild prey density in Ln norm when the
focal patch is in Rn, for any n ≥ 2. Additionally, the conditional aspect of the
intragulid prey motility can now depend on the densities of all three species via
its fitness. So doing provides a rather more satisfactory result from an ecological
perspective.

In the remainder of this note, we present the details needed to set up the model in
the case of Beddington-DeAngelis functional responses as a semi-dynamical system
with a global attractor. The arguments using the Acyclicity Theorem that give
sufficient conditions for the intraguild prey to persist in the system remain as in
[17] and [18] and we refer the interested reader to those papers.

3. Main Results. Define, for λ > 0,

Mλ(s) =

{
d2 for s ≥ 0,

−λs exp
(
d2

λs

)
+ d2 for s < 0.

(5)

Let g be as given in (3). Then we have two different sets of assumptions for M :

(M1): M is independent of v; that is, M(u, v, w;λ) = Mλ(g(u, 0, w)); or
(M2): M has dependence on v; that is, M(u, v, w;λ) = Mλ(g(u, v, w)).

The assumption (M1) was enforced in [17, 18], where the motility of intraguild
prey is conditioned on the density of resource species and intraguild predator only,
but not on its own density. In contrast, (M2) is more realistic as the motility of
intraguild prey is actually a decreasing function of its local fitness.

Definition 3.1. Let X be a complete metric space and γ : [0, T )×X → R where
T ∈ (0,∞]. We say that γ is ultimately uniformly bounded with respect to X if there
exists a continuous function C0 : R+ → R+ such that

|γ(t, x)| ≤ C0(‖x‖X) for all (t, x) ∈ [0, T )×X;

and furthermore, if T =∞ there exists a constant C∞ such that

lim sup
t→∞

|γ(t, x)| ≤ C∞ for all x ∈ X.

We denote by P the set of ultimately uniformly bounded functions with respect to
[W 1,p

+ (Ω)]3, where

W 1,p
+ (Ω) := {φ ∈W 1,p(Ω) : φ ≥ 0 a.e.}.

In [1, 2, 3], Amann proved existence results for a class of quasilinear parabolic
equation that includes (1). In particular, [2, Theorem 1] implies that for initial

conditions in [W 1,p
+ (Ω)] with p > n there is a unique local-in-time classical solution

to (1) with a corresponding maximal interval of existence [0, T ) (including the pos-
sibility of T = +∞). [2, Theorem 3] implies that if the L∞-norms of all solution
components remain bounded uniformly in t ∈ [0, T ), then the solution exists glob-
ally in time, i.e. T = +∞. Also, standard comparison principles for single parabolic
equations with coefficients that depend on time and space can be applied to these
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classical solutions to conclude that they remain non-negative in Ω for all t ∈ [0, T )
(see [14]).

We are now in a position to state our main theorems:

Theorem 3.2. Let Ω be a smooth bounded domain in Rn with n ≥ 2 and let the
initial data (u0, v0, w0) ∈ [W 1,p

+ (Ω)]3 with p > n and, finally, let (u, v, w) be the
unique local-in-time classical solution to (1) defined on some maximal existence
time [0, T ). Assume (M1). Then this solution exists globally in time (i.e., T =∞)
and, furthermore, there exists a constant 0 < γ < 1 such that

‖u(·, t)‖C1+γ(Ω), ‖v(·, t)‖C1+γ(Ω), ‖w(·, t)‖C1+γ(Ω) ∈ P. (6)

In particular, the system (1) defines a semiflow on [W 1,p
+ (Ω)]3 and this semiflow

possesses a compact global attractor.

Theorem 3.3. Let the basic assumptions be the same as Theorem 3.2. Assume
(M2), and that

a2
3h3 ≤ 4α2ω2. (7)

Then the local smooth solution (u, v, w) to (1) extends to infinity in time and fulfills
the other assertitions of Theorem 3.2.

4. Preliminaries.

Lemma 4.1. There exists a constant C1 > 0 such that

f(x, u, v, w) ≤ C1 − ω1u, g(u, v, w) ≤ C1 − ω2v, h(u, v, w) ≤ C1 − ω3w

for all u, v, w ≥ 0.

Proof. For x ∈ Ω, and u, v, w ≥ 0, we have

f(x, u, v, w) ≤ sup
Ω
r − ω1u, g(u, v, w) ≤ e1

h1
− µ1 − ω2v,

and

h(u, v, w) ≤ max

{
e2

h2
,
e3

h3

}
h2a2u+ h3a3v

1 + h2a2u+ h3a3v
− µ2 − ω3w

≤ max

{
e2

h2
,
e3

h3

}
− µ2 − ω3w.

This proves the lemma.

Lemma 4.2. ‖u(·, t)‖L∞(Ω), ‖w(·, t)‖L∞(Ω) ∈ P.

Proof. Let

W0 :=

(
max

{
e2

h2
,
e3

h3

}
− µ2

)
/ω3

so that w(x, t) satisfies wt − d3∆w ≤ ω3(W0 − w)w in Ω× (0, T ),
∂νw = 0 on ∂Ω× (0, T ),
w(x, 0) = w0(x) in Ω.

(8)

Next, we construct the upper solution

W (x, t) :=
W0

1 +
(

W0

supΩ w0
− 1
)
e−ω3W0t

,
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which satisfies Wt − d3∆W = ω3(W0 −W )W in Ω× (0, T ),
∂νW = 0 on ∂Ω× (0, T ),
W (x, 0) ≡ supΩ w0 ≥ w0(x) in Ω.

(9)

By comparison, w(x, t) ≤ W (x, t) for all x ∈ Ω and for all t ∈ [0, T ). Moreover, if
T =∞ then

lim sup
t→∞

[
sup

Ω
w(x, t)

]
≤ lim
t→∞

[
sup

Ω
W (x, t)

]
= W0.

This proves ‖w‖L∞(Ω) ∈ P. One can similarly show that ‖u‖L∞(Ω) ∈ P and we
omit the details.

Lemma 4.3. ‖∇u(·, t)‖L∞(Ω), ‖∇w(·, t)‖L∞(Ω) ∈ P.

Proof. From (2) and (4), we observe that for some constant C2 independent of
initial conditions,

|f(x, u, v, w)| ≤ C2 + ω1|u| and |h(u, v, w)| ≤ C2 + ω3|w|.
Therefore, Lemma 4.2 implies that f(x, u, v, w)u ∈ P and h(u, v, w)w ∈ P. Apply-
ing the parabolic Lp estimates [14, Theorem 7.13] to the first equation of (1), we
have for all p > n+ 2 and all t ∈ (1, T − 1),

‖u‖W 2,1,p(Ω×(t,t+1]) ≤ C(‖u‖L∞(Ω×(t−1,t+1)) + ‖fu‖L∞(Ω×(t−1,t+1))).

Since the right hand side is in P, one may apply the Sobolev embedding [12, p. 80,
Lemma 3.3] to conclude that for some β ∈ (0, 1),

‖u‖C1+β,(1+β)/2(Ω×[t,t+1]) ∈ P.

This implies ‖∇u(·, t)‖L∞(Ω) ∈ P.
Similarly, one may repeat the arguments to treat the third equation of (1) to

obtain ‖∇w(·, t)‖L∞(Ω) ∈ P.

5. Proof of Theorem 3.2. In this section, we prove Theorem 3.2. To this end, let
(u, v, w) be the unique local-in-time classical solution to (1), with initial conditions

in [W 1,p
+ (Ω)]3 and with (M1) enforced.

Proposition 5.1. ‖v‖Ln(Ω) ∈ P.

Proof. Write the equation of v as

vt −∇ · (M∇v) = ∇ · (vMu∇u+ vMv∇v + vMw∇w) + g(u, v, w)v

Using Lemma 4.1, we have

vt −∇ · (M∇v) ≤ ∇ · (vMu∇u+ vMv∇v + vMw∇w) + C1v − ω2v
2 (10)

Multiplying (10) by vn−1 and integrating by parts, we have

1

n

d

dt

∫
Ω

vn +

∫
Ω

(n− 1)vn−2M |∇v|2 + ω2

∫
Ω

vn+1

≤
∫

Ω

vn−1
[
− (n− 1)Mu∇u · ∇v − (n− 1)Mv|∇v|2

− (n− 1)Mw∇w · ∇v + C1v
]
.

(11)

By (M1),

M = Mλ(g(u, 0, w)) and Mv = 0. (12)
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Moreover, the uniform L∞ estimates in Lemma 4.2 imply that

‖Mu‖L∞(Ω), ‖Mw‖L∞(Ω) ∈ P. (13)

Using (12), (13), the fact that M ≥ d2 > 0 and Lemma 4.3, we conclude that there
exists α ∈ P and a constant c0 > 0 such that

d

dt

∫
Ω

vn + c0

∫
Ω

vn−2|∇v|2 + c0

∫
Ω

vn+1 ≤ α
∫

Ω

[
vn−1|∇v|+ vn

]
.

By definition of α ∈ P, there exists C0, t0 such that for all t ≥ t0,

d

dt

∫
Ω

vn + c0

∫
Ω

vn−2|∇v|2 + c0

∫
Ω

vn+1

≤ C0

∫
Ω

[
vn−1|∇v|+ vn

]
≤ c0

2

∫
Ω

vn−2|∇v|2 +
C0

2c0

∫
Ω

vn + C0

∫
Ω

vn.

Here the Young’s inequality was used for the last inequality. Therefore,

d

dt

∫
Ω

vn + c0|Ω|−
1
n

(∫
Ω

vn
)1+ 1

n

≤ C0

(
1

2c0
+ 1

)∫
Ω

vn, for t ≥ t0,

where we have used the fact that
∫

Ω
vn ≤ |Ω|

1
n+1

(∫
Ω
vn+1

) n
n+1 , by Hölder’s in-

equality. A further application of the following version of Young’s inequality

2M ≤ εMp +
p− 1

p

(
2p

pε

)1/(p−1)

with

M =

∫
Ω

vn, p = 1 +
1

n
, ε =

c0|Ω|−1/n

C0( 1
2c0

+ 1)
,

yields the following Gronwall-type inequality

d

dt

∫
Ω

vn + C̃0

∫
Ω

vn ≤ C̃1, for t ≥ t0,

where C̃0, C̃1 depend on n and |Ω| but not on initial data (u0, v0, w0). Consequently,

lim sup
t→∞

∫
Ω

vn ≤

(
C̃1

C̃0

)n
,

where C̃0, C̃1 are independent of initial data (u0, v0, w0).

Proof of Theorem 3.2. The a priori bounds established in Lemma 4.2 and Proposi-
tion 5.1 allow us to apply [13, Theorem 2.2] or [17, Section 3.3] to conclude global
existence of solutions, i.e. T = ∞, and moreover that (6) holds. In light of global

existence of solutions, the system defines a semiflow, Φ(·, t), on [W 1,p
+ (Ω)]3 by [2,

Theorem 1]. By (6), and the fact that C1+γ(Ω) compactly embeds in C1(Ω) which

continuously embeds in [W 1,p
+ (Ω)]3, it follows that Φ(·, t) is point dissipative and

asymptotically smooth. The classical result [9, Theorem 3.4.6] on the existence of
compact global attractors (see also [7, Theorem 3.1] and [20, Theorem 2.30]) can
then be applied.
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6. Proof of Theorem 3.3.

Proposition 6.1. ‖v‖Ln(Ω) ∈ P.

Proof. Let (u(x, t), v(x, t), w(x, t)) be the unique classical solution to (1), with initial

conditions in [W 1,p
+ (Ω)]3 with (M2) and (7) enforced.

Claim 6.2. If (7) holds, then

Mv(u(x, t), v(x, t), w(x, t)) ≥ 0 for all x ∈ Ω and t ≥ 0.

To see the claim, observe that

gv(u, v, w) ≤ a3w · h3a3

(1 + h2a2u+ h3a3v + α2w)2
− ω2

≤ a2
3h3

[
w

(1 + α2w)2

]
− ω2

≤ a2
3h3

4α2
− ω2 ≤ 0,

(14)

for any u, v, w ≥ 0. Since also (Mλ)′ ≤ 0 (where Mλ = Mλ(s) is defined in (5)), we
may then conclude that Mv = (Mλ)′gv ≥ 0. This proves Claim 6.2.

By Claim 6.2, we observe that (11) implies

1

n

d

dt

∫
Ω

vn +

∫
Ω

(n− 1)vn−2M |∇v|2 +

∫
Ω

vn+1

≤
∫

Ω

vn−1 [−(n− 1)Mu∇u · ∇v − (n− 1)Mw∇w · ∇v + C1v] .

(15)

Claim 6.3. ‖Mu‖L∞(Ω), ‖Mw‖L∞(Ω) ∈ P.

To see the claim, we observe that

gu(u, v, w) =
e1a1(1 + α1v)

(1 + h1a1u+ α1v)2
+

h2a2a3w

(1 + h2a2u+ h3a3v + α2w)2
.

By Lemma 4.2, gu ∈ P. Also, (Mλ)′ is bounded uniformly by definition (5). Hence,
Mu = (Mλ)′gu ∈ P as well. Similarly one can conclude that Mw = (Mλ)′gw ∈ P.
This proves Claim 6.3.

By Claims 6.2 and 6.3 and Lemma 4.3, we may estimate (15) in a similar way as
in the proof of Proposition 5.1 to conclude that

∫
Ω
vn ∈ P.

Proof of Theorem 3.3. Theorem 3.3 is proved in exactly the same way as Theorem
3.2, by using Lemma 4.2 and Proposition 6.1 instead.

Acknowledgments. RSC and KYL are grateful for the hospitality of the Institute
for Mathematical Sciences at Renmin University of China, at which part of this work
was completed.

REFERENCES

1. H. Amann, Dynamic theory of quasilinear parabolic equations I: Abstract evolution equations,
Nonlinear Anal., 12 (1988), 895–919. MR0960634

2. H. Amann, Dynamic theory of quasilinear parabolic systems III: Global existence, Math. Z.,
202 (1989), 219–250. MR0960634

3. H. Amann, Dynamic theory of quasilinear parabolic systems II: reaction-diffusion systems,
Differential and Integral Equations, 3 (1990), 13–75. MR0960634

4. P. Amarasekare, Productivity, dispersal and the coexistence of intraguild predators and prey,

J. Theor. Ecol., 243 (2006), 121–133. Amarasekare



INTRAGUILD PREDATION WITH CROSS-DIFFUSION 9

5. P. Amarasekare, Spatial dynamics of communities with intraguild predation: The role of
dispersal strategies, Am. Nat., 170 (2007), 819–831.

6. M. Arim, & P. A. Marquet, Intraguild predation: A widespread interaction related to species

biology, Ecol. Lett., 7 (2004), 557–564.
7. J. E. Billotti & J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc., 77

(1971), 1082–1088. MR0284682
8. S. M. Durant, Living with the enemy: Avoidance of hyenas and lions by cheetahs in the

Serengeti, Behavioral Ecology, 11 (2000), 624–632.

9. J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs, Vol.
25, Amer. Math. Soc., Providence, RI, 1988. MR0941371

10. J. K. Hale & P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal.,

20 (1989), 388–395. MR0982666
11. R. D. Holt & G. A. Polis, A theoretical modeling framework for intraguild predation, Am.

Nat., 149 (1997), 745–764.

12. O. A. Ladyzhenskaya, V. A. Solonnikov, & N. N. Ural’tseva, Linear and quasi-linear equations
of parabolic type, Vol. 23, Amer. Math. Soc., 1988. MR0241822

13. D. Le, Cross diffusion systems on n dimensional spatial domains, Indiana Univ. Math. J., 51

(2002), 625–643. MR1911048
14. G. M. Lieberman, Second order parabolic differential equations. World Scientific Publishing

Co., Inc., River Edge, NJ, 1996. MR1465184
15. E. Lucas, D. Coderre & J. Brodeur, Selection of molting and pupation sites by Coleomegilla

maculata (Coleoptera: Coccinellidae): Avoidance of intraguild predation, Environmental En-

tomology, 29 (2000), 454–459.
16. F. Palomares & P. Ferreras, Spatial relationships between Iberian lynx and other carnivores

in an area of Southwestern Spain, Journal of Animal Ecology, 33 (1996), 5–13.

17. D. Ryan, Fitness Dependent Dispersal in Intraguild Predation Communities, Ph.D thesis,
University of Miami, 2011.

18. D. Ryan & R. S. Cantrell, Avoidance behavior in intraguild predation communities: A cross-

diffusion model, Discrete Contin. Dyn. Syst. A, 35 (2015), 1641–1663. MR3285841
19. F. Sergio, L. Marchesi & P. Pedrini, Coexistence of a generalist owl with its intraguild predator:

distance-sensitive or habitat-mediated avoidance?, Animal Behavior, 74 (2007), 1607–1616.

20. H. L. Smith & H. R. Thieme, Dynamical systems and population persistence, Vol. 118. Prov-
idence, RI, American Mathematical Society, 2011. MR2731633

21. C. M. Thompson & E. M. Gese, Food webs and intraguild predation: Community interactions
of a native mesocarnivore, Ecology, 88 (2007), 334–346.

Received November 21, 2016; revised January 16, 2017.

E-mail address: email1@smsu.edu

E-mail address: email2@aimSciences.org

E-mail address: email3@ece.pdx.edu

mailto:email1@smsu.edu
mailto:email2@aimSciences.org
mailto:email3@ece.pdx.edu

	1. A Quasilinear System of PDE
	2. Background
	3. Main Results
	4. Preliminaries
	5. Proof of Theorem 3.2
	6. Proof of Theorem 3.3
	Acknowledgments
	REFERENCES

